CBSE Class 10 Maths: Chapter 8 Introduction to Trigonometry - Part 1: MCQ

CBSE Class 10 Maths: Chapter 8 Introduction to Trigonometry - Part 1: MCQ previous year questions and their solutions by experts
Top 25 MCQs with Answers | Latest CBSE Pattern

Welcome to Part 1 of our new 8-part series on Chapter 8, Introduction to Trigonometry. This post contains the top 25 Multiple Choice Questions (MCQs) to help you master trigonometric ratios, identities, and specific angle values.

Recommended Books for Deep Practice

NCERT Science Class 10 Textbook

NCERT Science Textbook Class 10

Buy on Amazon
S. Chand Physics Class 10 Textbook

S. Chand Physics for Class 10

Buy on Amazon
S. Chand Biology Class 10 Textbook

S. Chand Biology for Class 10

Buy on Amazon
S. Chand Chemistry Class 10 Textbook

S. Chand Chemistry for Class 10

Buy on Amazon
NCERT Exemplar Science Class 10

NCERT Exemplar Problems Science Class 10

Buy on Amazon

Top 25 MCQs - Introduction to Trigonometry

Question 1: Value of Tan A

CBSE 2020

Given that sin A = 3/5, the value of tan A is:

  • (a) 3/4
  • (b) 4/3
  • (c) 3/5
  • (d) 4/5
(a) 3/4
Explanation: sin A = Perpendicular / Hypotenuse = 3/5.
Let P = 3k, H = 5k.
By Pythagoras theorem, Base (B) = √(H² - P²) = √((5k)² - (3k)²) = √(25k² - 9k²) = √16k² = 4k.
tan A = Perpendicular / Base = 3k / 4k = 3/4.

Question 2: Identity Application

CBSE PYQ 2023

The value of (1 + tan² θ)(1 - sin θ)(1 + sin θ) is:

  • (a) 0
  • (b) 1
  • (c) 2
  • (d) 1/2
(b) 1
Explanation: (1 + tan² θ) = sec² θ.
(1 - sin θ)(1 + sin θ) = 1 - sin² θ = cos² θ.
So, sec² θ × cos² θ = (1/cos² θ) × cos² θ = 1.

Question 3: Angle Value

CBSE PYQ 2022

If tan A = 1 and sin B = 1/√2, then the value of cos(A+B) is:

  • (a) 0
  • (b) 1
  • (c) 1/2
  • (d) √3/2
(a) 0
Explanation: tan A = 1 => A = 45°.
sin B = 1/√2 => B = 45°.
So, A + B = 45° + 45° = 90°.
cos(A+B) = cos(90°) = 0.

Question 4: Sec A + Tan A

CBSE 2021

The value of (sec A + tan A)(1 - sin A) is equal to:

  • (a) sec A
  • (b) sin A
  • (c) cosec A
  • (d) cos A
(d) cos A
Explanation: (sec A + tan A) = (1/cos A + sin A/cos A) = (1 + sin A)/cos A.
Expression = [(1 + sin A)/cos A] × (1 - sin A)
= (1 - sin² A) / cos A
= cos² A / cos A = cos A.

Question 5: Reciprocal Ratios

CBSE PYQ 2024

If 5 tan θ = 4, then the value of (5 sin θ - 3 cos θ) / (5 sin θ + 2 cos θ) is:

  • (a) 1/6
  • (b) 1/3
  • (c) 2/3
  • (d) 1/4
(a) 1/6
Explanation: tan θ = 4/5.
Divide numerator and denominator by cos θ:
Num: 5(sin θ/cos θ) - 3 = 5 tan θ - 3
Den: 5(sin θ/cos θ) + 2 = 5 tan θ + 2
Substitute 5 tan θ = 4:
(4 - 3) / (4 + 2) = 1 / 6.

Question 6: Identity 9sec²A

CBSE PYQ 2020

9 sec² A - 9 tan² A is equal to:

  • (a) 1
  • (b) 9
  • (c) 8
  • (d) 0
(b) 9
Explanation: Take 9 common: 9(sec² A - tan² A).
Using identity sec² A - tan² A = 1.
9(1) = 9.

Question 7: Angle Evaluation

CBSE 2025

The value of sin 60° cos 30° + sin 30° cos 60° is:

  • (a) 0
  • (b) 1
  • (c) 2
  • (d) 1/2
(b) 1
Explanation: (√3/2 × √3/2) + (1/2 × 1/2)
= 3/4 + 1/4 = 4/4 = 1.

Question 8: Sec A Value

CBSE PYQ 2023

If cos A = 4/5, then the value of tan A is:

  • (a) 3/5
  • (b) 3/4
  • (c) 4/3
  • (d) 5/3
(b) 3/4
Explanation: cos A = B/H = 4/5.
P = √(H² - B²) = √(25 - 16) = √9 = 3.
tan A = P/B = 3/4.

Question 9: Trigonometric Table

The value of (sin 30° + cos 30°) - (sin 60° + cos 60°) is:

  • (a) -1
  • (b) 0
  • (c) 1
  • (d) 2
(b) 0
Explanation: sin 30° = 1/2, cos 30° = √3/2.
sin 60° = √3/2, cos 60° = 1/2.
(1/2 + √3/2) - (√3/2 + 1/2) = 0.

Question 10: Max Value

CBSE PYQ 2022

The maximum value of 1/sec θ, where 0° ≤ θ ≤ 90°, is:

  • (a) 0
  • (b) 1
  • (c) -1
  • (d) 2
(b) 1
Explanation: 1/sec θ = cos θ.
The maximum value of cos θ is 1 (at θ = 0°).

Question 11: Complementary Angles

CBSE 2019

If sin A = 1/2 and cos B = 1/2, then the value of (A + B) is:

  • (a) 0°
  • (b) 30°
  • (c) 60°
  • (d) 90°
(d) 90°
Explanation: sin A = 1/2 => A = 30°.
cos B = 1/2 => B = 60°.
A + B = 30° + 60° = 90°.

Question 12: Identity Simplification

(1 + tan² A) / (1 + cot² A) is equal to:

  • (a) sec² A
  • (b) -1
  • (c) cot² A
  • (d) tan² A
(d) tan² A
Explanation: (sec² A) / (cosec² A) = (1/cos² A) / (1/sin² A) = sin² A / cos² A = tan² A.

Question 13: Sin A = Cos A

CBSE PYQ 2021

If sin θ = cos θ, then the value of 2 tan θ + cos² θ is:

  • (a) 2
  • (b) 2.5
  • (c) 3.5
  • (d) 4
(b) 2.5
Explanation: sin θ = cos θ means θ = 45°.
2 tan 45° + cos² 45° = 2(1) + (1/√2)² = 2 + 1/2 = 2.5.

Question 14: Triangle Relation

CBSE 2024

In ΔABC, right-angled at B, if tan A = √3, then the value of cos A cos C - sin A sin C is:

  • (a) -1
  • (b) 0
  • (c) 1
  • (d) √3/2
(b) 0
Explanation: tan A = √3 => A = 60°.
Since B = 90°, C = 180 - (90+60) = 30°.
cos 60° cos 30° - sin 60° sin 30°
= (1/2)(√3/2) - (√3/2)(1/2) = 0.
(Alternatively, this is the formula for cos(A+C) = cos(90) = 0).

Question 15: Square Identity

If x = a cos θ and y = b sin θ, then b²x² + a²y² is equal to:

  • (a) a²b²
  • (b) ab
  • (c) a⁴b⁴
  • (d) a² + b²
(a) a²b²
Explanation: b²(a cos θ)² + a²(b sin θ)²
= b²a²cos²θ + a²b²sin²θ
= a²b² (cos²θ + sin²θ) = a²b² (1) = a²b².

Question 16: Reciprocal Sum

CBSE PYQ 2023

If tan θ + cot θ = 5, then the value of tan² θ + cot² θ is:

  • (a) 23
  • (b) 25
  • (c) 27
  • (d) 15
(a) 23
Explanation: Square both sides of (tan θ + cot θ) = 5.
tan²θ + cot²θ + 2(tanθ)(cotθ) = 25
tan²θ + cot²θ + 2(1) = 25
tan²θ + cot²θ = 25 - 2 = 23.

Question 17: Value of expression

The value of (sin 45° + cos 45°) is:

  • (a) 1/√2
  • (b) √2
  • (c) √3/2
  • (d) 1
(b) √2
Explanation: 1/√2 + 1/√2 = 2/√2 = √2.

Question 18: Sin²A Identity

CBSE PYQ 2020

If sin A + sin² A = 1, then the value of cos² A + cos⁴ A is:

  • (a) 1
  • (b) 1/2
  • (c) 2
  • (d) 3
(a) 1
Explanation: sin A = 1 - sin² A = cos² A.
Substitute sin A for cos² A in the expression:
(sin A) + (sin A)² = 1.

Question 19: Tan Identity

If tan A = 3/4, then cos² A - sin² A is:

  • (a) 7/25
  • (b) 1
  • (c) -7/25
  • (d) 4/25
(a) 7/25
Explanation: P=3, B=4, H=5.
cos A = 4/5, sin A = 3/5.
(4/5)² - (3/5)² = 16/25 - 9/25 = 7/25.

Question 20: Complementary

CBSE 2025

The value of tan 1° tan 2° tan 3° ... tan 89° is:

  • (a) 0
  • (b) 1
  • (c) 1/2
  • (d) Not defined
(b) 1
Explanation: Terms pair up: tan 1° × tan 89° = tan 1° × cot 1° = 1.
All pairs cancel out to 1, leaving tan 45° = 1.
1 × 1 × ... × 1 = 1.

Question 21: Cosec Calculation

If √3 tan θ = 3 sin θ, then value of sin² θ - cos² θ is:

  • (a) 1/3
  • (b) 3
  • (c) 1/√3
  • (d) 0
(a) 1/3
Explanation: √3(sin/cos) = 3 sin => 1/cos = √3 => cos θ = 1/√3.
sin² θ = 1 - cos² θ = 1 - 1/3 = 2/3.
sin² θ - cos² θ = 2/3 - 1/3 = 1/3.

Question 22: Max Value Sin

CBSE 2021

The maximum value of sin θ is:

  • (a) 1/2
  • (b) √3/2
  • (c) 1
  • (d) > 1
(c) 1
Explanation: The value of sine ranges from -1 to 1. The maximum is 1 (at 90°).

Question 23: Triangle Identity

CBSE Sample Paper 2022

In ΔABC right angled at B, sin A = 7/25, then cos C is:

  • (a) 7/25
  • (b) 24/25
  • (c) 7/24
  • (d) 24/7
(a) 7/25
Explanation: In a right triangle, A + C = 90°, so C = 90 - A.
cos C = cos(90 - A) = sin A.
Since sin A = 7/25, cos C = 7/25.

Question 24: Sec Value

If sec θ = 25/7, then sin θ is:

  • (a) 7/24
  • (b) 24/7
  • (c) 24/25
  • (d) 7/25
(c) 24/25
Explanation: sec θ = H/B = 25/7.
P = √(25² - 7²) = √(625 - 49) = √576 = 24.
sin θ = P/H = 24/25.

Question 25: Tan and Cot

CBSE 2024

If tan A = cot B, then A + B = ?

  • (a) 45°
  • (b) 60°
  • (c) 90°
  • (d) 180°
(c) 90°
Explanation: tan A = cot B = tan(90 - B).
A = 90 - B
A + B = 90°.

About the author

Post a Comment